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ABSTRACT

Recently, grapes by-products have great attention due to their unique antioxidant activity and
biological promoting effects. Grape seeds powder was greenly extracted by ultrasonic probe at a
sonication power of 6 kJ within 10 minutes. Physico-chemical characterizations were performed for
grape seed powder through FESEM, XRD, and XPS. Biological implications including bactericidal and
anticancer activities were conducted for the extract. Moreover, the antioxidant activity of the obtained
extract was examined. The bactericidal activity was investigated against both Gram-positive and Gram-
negative bacteria. The obtained results confirmed the efficacy of the facile green applied route in
extracting grapes seed without affecting its desired structural and biological activities. Therefore, the
extract recorded an excellent free radical scavenging activity of 92% to compete with the ascorbic
acid. Moreover, it proves promising bactericidal activity against tested bacterial strains with clear
zones up to 25 mm. The grapes seed extract possesses an inhibition percentage of up to 78.2 against
pancreatic cancer cells.
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INTRODUCTION

Grapes are considered one of the world’s most important fruit crops with unique antioxidant, anti-inflammatory, anti-
cancer, and anti-aging activities because of their ubiquitous and abundant production of the secondary metabolite
group [1, 2]. However, Grape seeds are treated as agricultural waste despite their rich polyphenol content. Instead,
they can be reused and converted into valuable economic turns via numerous scientific processes [3, 4]. Grape
polyphenols are mostly present in the seeds, with a high ratio between 60 to 70 percent of their total extractable
compounds. The series of non-polar (lipids) and semi-polar (phenolics) molecules highly accumulated in grape seeds
is responsible for their bioactivities. Worldwide, grape seed extract is considered a natural source of polymeric and
pro-anthocyanidins oligomeric. Pro-anthocyanidins, extracted from grapes seed, are defined to be procyanidins
consisting of flavan–3-ols, as (+)-catechin, (−)-epicatechin, and (−)-epicatechin–3-gallate that linked through C4–C6 or
C4–C8 bonds [5, 6]. Comparatively, grape seeds contain higher levels of monomeric, oligomeric, and polymeric
flavanol content than grape skin [6–8]. Therefore, grape seeds exhibited a higher antioxidant activity with
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participation in numerous physiological regulatory mechanisms making it a reliable candidate for the potential
medical applications [9–11].
Flavonoids are proven to have promising anticancer activity through the reduction of cellular oxidative damage
helping, therefore, the maintenance of intracellular antioxidant defenses via their free radical scavenging ability.
Recently, several medicinal plants and their components have been applied for infectious disease treatment as Coptis
chinensis Franch and Rhodomyrtus tomentosa. The flavonoids isolated from grape seeds exhibit promising
bactericidal activity against different bacterial strains [12–15].
Ultrasound-assisted extraction is considered one of the non-conventional techniques that have been applied for the
extraction of fruits’ bioactive compounds [16–19]. It aims to improve the performance of conventional extraction
routes, especially for the short processing time and the increased yield extraction [20, 21]. Ultrasound cavitation
forces are responsible for its higher efficiency that involves bubbles implosion formed within the extracted medium.
Accordingly, a rapid adiabatic compression of the gases and vapors originates within the cavities or bubbles.
Therefore, high temperature and pressure are produced leading to cell wall rupture and facile access to the cellular
content followed by an elevation in the analytic solubility and solvent penetration into the extraction matrix [22–24].
In this scenario, ultrasonic mediated extraction of grapes seeds is optimized to be applied for dual antioxidant and
bactericidal applications.

MATERIALS AND METHODS

Materials

Roumy Ahmer (red) grapes were obtained from the local markets in Egypt, Citric acid and absolute ethanol 99.8%
(Fisher Scientific UK) were utilized. Folin Ciocalteu reagent (Sigma Aldrich), Sodium carbonate (99.5, Merck), Sodium
Nitrate (99.99, Merck), Aluminum chloride (99.99, Sigma Aldrich) and Sodium hydroxide (99.5, Merck) were used.

Methods

Preparation of Grape Seeds Extract (GSE)

The collected grape seeds were washed several times with tape water followed by distal water then dried in an oven
(Mehmert, German) at 500C overnight. Further, the grape seeds were ground using a special die agitates mortar
(Janke & Kunkel GmbH Co., Germany). The obtained fine seeds powder was immersed in a 3% alcoholic /citric acid
solution (50% deionized water + 50 % absolute ethanol). The solution suspension was treated by ultrasonic (probe
with a frequency of 20 kHz) irradiation for 10 minutes at 6K Joule. The treated solution media was filtered using filter
paper (Whatman 4) and the clear solution was kept in the fridge for further analysis.

Structural Characterization and Biological Implications

Structural Characterization

Surface topology of the grapes seeds powder was investigated by field emission scanning electron microscope
(FESEM) at the National Research Centre (Quanta FEG 250-type microscope equipped with an energy dispersive X-ray
attachment EDAX/Genesis device). Moreover, X-ray powder diffraction (XRD) analysis was achieved using Cu K�
radiation (l = 1.5418 Å) at 0.3 S scanning speed (Philips X’pert Pro X-ray powder diffractometer). The applied current
and voltage were 40 mA and 40 kV respectively. Additionally, the X-ray photoelectron Spectroscopy (XPS) technique
was applied on an AXIS ULTRA DLD spectrometer with AlK-α radiation (hν = 1486.71 eV). An energy resolution of 0.48
eV was adjusted at 150Watt (W) with a pass energy of 16 electron volts (eV).

Biological Implications

Determination of Total Polyphenol Content

Total polyphenol content is determined according to the Folin Ciocalteu method described by Pastrana-Bonilla et al.
0.2 ml of each diluted sample is added to dilute Folin Ciocalteu reagent (1 ml, 10-fold). Post incubation for two
minutes, sodium carbonate (0.8 ml, 7.5%) is added. While the extraction solution is replaced by distilled water for
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(1)

blank at similar conditions. All samples are incubated for 30 minutes at room temperature. The absorbance of each
solution is measured at 765 nm. The same procedure is repeated for all gallic acid solutions with a concentration
range between 0 and 0.25 mg/ml [25, 26].

Determination of Total Flavonoid Content

Total flavonoids are measured by mixing 1 mL of the tested sample with 0.3 ml of NaNO2 (5 %, w/v). After 5 minutes,
0.5 mL of AlCl3 (2 %, w/v) is added. A standard flavonoid solution (100 μm) is used. Then, the tested sample is mixed
and neutralized by 0.5 ml of 1 mole of NaOH standard solution post 6 minutes. The mixture is incubated at room
temperature for 10 minutes. The absorbance was measured at the range of 300–600 nm against the blank, where
AlCl3 solution was substituted by water. Quercetin of concentration range 0–125-μg/ml is chosen as the standard for
the expression of the results at 510 nm [27].

DPPH Free Radical Scavenging Test

Various concentrations ranged between 0–250 µg/ml of the extract and/or ascorbic acid (as a positive control) is
mixed separately with 1 mL of DPPH% solution in ethanol (0.1 mM). The mixtures are dark and kept for 30 minutes
then, the absorbance is measured at 517 nm [28]. The DPPH inhibition percentage is calculated by applying the
following equation

where As is the absorbance of the DPPH% sample solution, and Ac is the absorbance of the DPPH% blank solution.

Bactericidal Activity

Antibacterial Susceptibility Testing (AST)

Using the Kirby-Bauer agar diffusion technique (disc and well diffusion), the assembled natural extract’s bactericidal
efficiency and zone of inhibition (ZOI) dimensions were explored towards 6 particular categories of bacterial
pathogens. Three Gram-negative (GN) species including, E.coli O157:H7, Pseudomonas aeruginosa, and Klebsiella
pneumonia, and three Gram-positive (GP) species including Staphylococcus aureus, Bacillus subtilis, and Listeria
monocytogenes were applied in this study. According to the previous investigation done by Hemdan et al., the
targeted bacterial strains were regrown and sub-cultured by spreading the stocked culture onto nutrient agar [29].
Upon that surface of Mueller Hinton Agar (MHA) dishes, the formerly mentioned examined types were meticulously
distributed with uniform cell suspension. The disc-diffusion assay was conducted in particular circumstances. The
sterilized designed discs were maintained under sterile conditions for dryness after already being immersed using 50
µl of the generated natural extract at a 20 µg/mL dosage. Utilizing sterile clamping forceps, the moistened discs were
then positioned on the MHA summit surface. Using a sterilized Cork borer with an internal diameter of 8 mm,
boreholes in a thick layer of MHA medium were punched for the well-diffusion experiment. The prepared extract was
aseptically injected through each hole at a fixed volume of 50µl. Vancomycin and Ciprofloxacin were employed as
positive controls, and sterilized water functioned as the negative regulation. All dishes were then flipped over and left
in an incubator at 37 °C. Using a digital caliper, the zone of inhibition (ZOI) readings throughout the discs and wells
were measured [30]. According to Lavorgna et al. [31], the nonlinear dose-response modeling was applied to estimate
the IC50 values and IC record (concentration levels that can destroy 50% of viable cells) for the extract utilizing
GraphPad Prism programming Software.

Determination of Minimum Inhibitory Concentrations

Using a quantitative technique, the MIC values and effective dosage of the prepared extract were determined. The
concentrations used ranged between 5 to 25 mg/ml. Three tubes are filled with the prepared natural extract solution
(media containing the doses of the prepared natural extract), the prepared natural extract solution, and the positive
control (media containing antibiotic inoculum). One mL of each tube was transmitted to Petri dishes after exposure to
different retention times (10, 15, 30 min), and the proper quantity of agar medium was poured. Following that, all

Inhibition% = (1 −
As

Ac

) × 100,
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(2)

(3)

implanted plates were incubated overnight at 37°C. The MIC values were confirmed by comparing the two types of
control tubes. The results were offered as the means of three independent replicates [32].

The Pseudo-First-Order Kinetic Modeling

The following formula was applied to calculate the kinetic modeling to figure out the ratio of the original microbial
cell densities (N0) to the total number of viable cells containing the required density of the prepared natural extract
tests performed over numerous retention times (Nt), in order to estimate the dangerous values (k1) of each species
of bacteria being taken into account [33].

where k1 (1min−1) is the rate of inactivation, qe (µg.mL−1), and qt (µg.mL−1) are the amounts adsorbed at equilibrium
and at time t (min), respectively. A straight line of ln (qe—qt) versus t suggested that this kinetic model applied to the
data [28].

The Physiological Changes of Bacterial Strains

By adding 100 ml of bacterial culture to two test tubes each comprising 50 ml of sterile trypticase soy broth, we were
able to assess the amount of basic variability in the multiplication and makeup of the bacterial isolates. One amongst
them received an injection of the manufactured natural extract at its effective concentration (25 mg/mL), whereas the
other served as the comparison group. Samples were taken every two hours for a full 24 hours (n = 12 readings)
throughout all tubes that were deposited in a shaking incubator at 37 °C with a 200 rpm shaking [34].

Bacterial Growth Rate

A volume of sample (1 mL) was retrieved from each assigned tube to quantify each investigated bacterial strain’s
absorption spectrum at 600 nm using the spectrophotometer [35].
Estimation of amounts of released protein
The Bradford protein assay was applied to measure the quantities of liberated protein from damaged cells [36, 37].

ATP Bioluminescence Assay

ATP reflects a significant variability in the cell’s activities while levels have dropped suddenly followed by cell killing.
Bacterial energies and superior advantage have been determined by assessing the external ATP production that uses
the luciferin-luciferase technique. The luminescence shapes and luminescence brightness were computed and
recognized as relative fluorescence units using the ATP luminometer (RLU) [37, 38].

Anticancer Activity

In-vitro cytotoxicity studies were investigated against normal skin fibroblast normal cells (BJ1), Pancreatic cancer cell
line (PACA2), Lung carcinoma cell line (A549) and breast cancer (MCF7) cell lines by MTT assay 3-[4, 5-dimethylthiazol–
2- yl]–3, 5-diphenyltetrazolium bromide dye. In detail, the tested cells are inserted in a well plate at a specific density
of 1 ×104 cells per well. The media are inoculated with an antibiotic–anti–mycotic mixture (1%); composed of
potassium penicillin (10,000 U mL−1), streptomycin sulfate (10,000 μg/mL), amphotericin B (25μg/mL), and L-
glutamine (1%, Bio west, USA). Further, the media are incubated at body temperature (37 °C) in a humidified
atmosphere at 5% CO2. Post-cell attachment, the media are replaced by the extracted sample for 72 hours. The cells
are incubated within the MTT solution (5.0 mg/mL) at 37 °C for four hours. The developed purple formazan crystals
are dissolved in 100μL dimethyl sulfoxide (DMSO) and recorded on an ELISA reader. The cell viability percentage is
calculated following the below equation

where

log (qe − qt) = log qe −
K1t

2.303
,

Viability% =
ODtest − ODblank

ODcontrol − ODblank
× 100,
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ODtest: The value of extract absorbance measured at 570 nm,
ODblank: The value of blank absorbance measured at 570 nm,
ODcontrol: The negative control.

RESULTS AND DISCUSSIONS

Structural Characterization of Grape Seeds Extract Powder

Field Emission Scanning Electron Microscope (FESEM)

The surface morphology of the grape seeds extract powder was depicted using FESEM along with its EDAX (Figure 1).
The figures show fiber bundles embedded within the grape seeds matrix. The diameter of the enlarged fibers ranged
between 360–440 nm.

Figure 1. a) FESEM images for grapes seeds extract powder, b) EDAX analysis

EDAX analysis indicates the elemental analysis of the grape’s seed powder. The powder is composed of 60% carbon
from the cellulosic content along with nitrogen. Additionally, trace amounts of phosphorus, calcium, and potassium
are depicted.

X-Ray Diffraction XRD

The crystalline structure of the grape seed powder was investigated via XRD diffractometry (Figure 2). The XRD
pattern shows two diffraction peaks at 2 theta = 6.652◦, 20.73◦ indicating the crystalline nature of the tested powder.
The two characteristic peaks are attributed to the cellulosic content within the grapes seeds powder.
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Figure 2. XRD pattern of the grapes seed extract powder

X-Ray Photon Spectroscopy (XPS)

XPS Survey narrow scan spectra of the ground grape seeds extract are represented in Figure 3. The main peaks of
oxygen binding energies are located at 510 eV. Moreover, C 1s binding energies are depicted at 285 eV.

Figure 3. XPS of Grape Seeds Powder

Biological Implications

Antioxidant Activity

Grape seed extract's pharmacological importance as an antioxidant, anti-inflammatory, and anti-cancer activity is
attributed to its high total phenolic and flavonoid content. Total phenolic concentration within grapes seed extract
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was measured to be 90.5 mg gallic acid equivalents/g of extract. Moreover, total flavonoids exhibited a high value of
58 mg quercetin equivalents/g of extract. The recorded high concentrations exhibit promising antioxidant activity for
grapes seed extracted by ultrasonic technique proving it is a reliable route for grapes seed extraction without
affecting its antioxidant activity.
Free radical scavenging ability is used for the treatment of reperfusion tissue injuries even post-transplantation
processes because of its anti-inflammatory ability and the reduction of apoptotic cell death [39, 40]. Grape seed
extract contains powerful free radical scavengers (polyphenols) such as procyanidins and proanthocyanidins [41].
Grapes seed extraction inhibition percentage was measured by DPPH against ascorbic acid (Figure 4). Interestingly,
grapes seed extract recorded a very high percentage of 91.29% at a concentration of 250 (ug/mL) competing with the
most known free radical scavenger (ascorbic acid). Upon decreasing concentration; the inhibition percentage
decreases. However, it still records promising inhibition ability.

Figure 4. Grapes seeds extraction inhibition percentage against ascorbic acid

Bactericidal Activity

The agar diffusion technique was employed to investigate the prepared natural extract’s bactericidal properties
against tested bacterial strains. The achieved results revealed that the prepared extract evidenced substantially
greater potentiality for the ability to hinder a wide range of GN species under investigation, which would include E.
coli O157, P. aeruginosa, and K. pneumoniae at a level of 20 mg/ mL with the ZOI becoming 25 ±0.14, 26 ±0.28 and
28±0.23 mm, respectively, utilizing disc diffusion assay and ZOI becoming 27 ±0.14, 29 ±0.24 and 30±0.12. Using a
disc diffusion experiment, the ZOI values of the extract against the GP species such as S. aureus, B. subtilis, and L.
monocytogenes were concurrently verified to be 22 ±0.26, 20 ±0.16, and 21 ±0.22 mm, correspondingly (Table 1). The
obtained results also exhibited that the studied extract was more powerful against GN bacteria than it was against GP
bacteria.
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Table 1. Measuring of ZOI diameters of the prepared natural extract against established dangerous bacterial strains

Tested dangerous bacterial species
ZOI diameter (mm)

Disc assay Well assay

E. coli O157 25 ±0.14 27 ±0.14

P. aeruginosa 26 ±0.28 29 ±0.24

K. pneumoniae 28±0.23 30±0.12

S. aureus 22 ±0.26 25 ±0.21

B. subtilis 20 ±0.16 23 ±0.23

L. monocytogenes 21 ±0.22 24 ±0.16

The diameter of ZOI surrounding discs was discovered to be shorter than around wells, according to the findings.
These findings are compatible with those of El Nahrawy et al., [42, 43] who discovered that the ZOI width in the well
diffusion assay is greater than that found in the Kirby -Bauer disk diffusion assay. Vancomycin, employed as a
standard drug, has a shorter ZOI than the produced natural extract. This implies that perhaps the studied natural
extract has stronger suppressive activity than the standard drug.

Estimation of MIC and IC50

The MIC measurement was then applied to empirically validate the bactericidal activity of the various doses of the
prepared natural extract. It is interesting to observe that, as depicted in figure 5, the prepared natural extract seemed
to have a magnificent antibacterial influence against all tested microorganisms with varying MIC values of MICs
relying on dosages (mg/mL) and retention time (min). Experimental findings of MIC values pointed out that the
extract really had a strong antibacterial impact against E.coli, with 20 mg/mL of MIC after 20 min of exposure time,
and 10 min for P.aeruginosa and K.pneumoniae. In other hand, the MIC values of S.aureus (MIC = 50 mg/mL after 20
min of exposure time). According to the findings, plant extract had lower MIC values for GN bacteria than GP bacteria
(Table 2), (Figure 6). The discrepancy in inactivation properties might well be attributed to differences in the chemical
components of the cells of bacteria and their potential to penetrate bacterial ' cellular membranes [44].

Table 2. The considered IC50, Log IC50, and R2 of the prepared natural extract

The prepared natural extract
The prepared natural extract

IC50 (µM) Log IC50 (µM) R2

E. coli O157 11.21 1.35 0964

P. aeruginosa 5.52 1.02 0.945

K. pneumoniae 8.24 1.21 0.936

S. aureus 12.65 1.40 0.978

B. subtilis 13.33 1.43 0.983

L.monocytogenes 16.69 1.50 0.965
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Figure 5. Estimated MIC values of the prepared natural extract towards examined bacterial species. The remaining viable cell
populations are also shown at various time intervals of 5 min, 10, 15, and 30 min. Two-way analysis of variance (ANOVA) states **
indicates moderate correlation (p ≤ 0.01), *** indicates high correlation (p ≤ 0.001).

Figure 6. Normalized absorbance (%) of studied the prepared natural extract against a) Gram-negative and b) Gram-positive
bacteria

The Kinetic Modeling Using the Pseudo-First-Order Kinetic Model

After becoming subject to the prepared extract, the examined bacterial species’ deactivation probabilities were
estimated using the pseudo-first-order reaction kinetics. Outcomes from kinetic simulations utilizing pseudo-first-
order suggested that extract would swiftly prevent P.aeruginosa development, whereas L.monocytogenes organisms
had the lowest suppression frequency. In addition, relying upon the type of microbial pathogens examined, the
effective concentration of the natural extract was the one that could effectively suppress the growth of all bacterial
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strains studied throughout a range of retention times. It was important to note that the L.monocytogenes species
under investigation had massive damage over an extended period. The results obtained showed that E.coli >
P.aeruginosa > K.pneumoniae > S.aureus > B.subtilis > L.monocytogenes tested the manufactured natural extract as a K1
constant at a rapid rate of inactivation (Table 3).

Table 3. Kinetic values (K1 (min–1)) of Pseudo-first-order calculation for inactivation of tested harmful bacterial strains by the prepared natural
extract

Tested microbial pathogens
Prepared natural extract (25 µg/mL)

K1 R2

E. coli O157 0.4540 0.9634

P. aeruginosa 0.3649 0.9751

K. pneumoniae 0.3165 0.9952

S. aureus 0.2859 0.9847

B. subtilis 0.2348 0.9878

L. monocytogenes 0.1956 0.9893

The Physiological Altering of Bacterial Species

Following exposure to the effective dose of the prepared natural extract, the outcomes, as illustrated in figure 7,
proved that the proliferation levels of all the tested bacterial species declined progressively and dramatically. The
data attained determined that when comparing the bacterial growth curves of all analyzed bacteria, P.aeruginosa
bacteria had a more significant and more rapid incline, whereas L.monocytogenes species had a lesser declining rate.
Similarly, the amount of ATP is a powerful predictor of the productivity and vitality of the microbial species as well as
the magnitude of their capability to proliferate, spread disease, and cause severe damage. Depending on the
evidence in figure 8, P.aeruginosa bacteria had significantly lower levels of ATP compared to the other species
subjected to the test, whereas L.monocytogenes bacteria displayed less of a drop.

Figure 7. The growth curve of a) E. coli O157, b) P.aeruginosa, c) K. pneumoniae d) S. aureus, e) B.subtilis, f) L.monocytogenes before and
after subjecting to the prepared natural extract
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Figure 8. Amounts of ATP produced from a) E. coli O157, b) P.aeruginosa, c) K. pneumoniae d) S. aureus, e) B.subtilis, f)
L.monocytogenes before and after subjecting to the prepared natural extract

Protein Release

As shown in Figure 9, the observations on protein permeability from damaged bacterial species revealed that the
quantity of protein released massively increased following the potent dosage of the extract. As an indication of GN
bacteria, protein leakage quantities increased for P.aeruginosa, and it was more substantial than for other species.
This evidence supports (Jiang et al. 2019) [45], who reported that the protein release rate and quantities from
compromised E. coli cells were quicker and more significant than those unearthed in S. aureus. This is because
disrupted E.coli cells have a small cell wall, highly permeable interlayer frameworks, and the structure of sluggish
peptidoglycans. Consequently, it might be assumed that this type of natural extract might result in measurable cell
substance ejection as well as critical morphological changes in the microbial cell wall [46]. GN bacteria with
inadequate resilience to environmental stress include P. aeruginosa and E. coli. As a result of the absence of bacterial
structures, they suffer loss or deformity. Antimicrobial drugs generate softly porous bacterial cells [47].
In contrast, the cell wall GN bacterial strains comprise 90% or more peptidoglycan, giving their walls more enduring
physiological qualities. The prepared natural extract will become less effective against certain bacteria species as a
result [48]. The incline of the curve of bacterial evolution and the amounts of proteins released as a result of cell lysis
were significantly higher in Gram-negative bacteria than in GP bacteria, according to many pieces of evidence. This
happens because the GP cell wall has a rigid and immovable structure that makes it more tolerant to bacteriostatic
substances [49, 50].
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Figure 9. Quantities of the leakaged protein from a) E. coli O157, b) P.aeruginosa, c) K. pneumoniae d) S. aureus, e) B.subtilis, f)
L.monocytogenes before and after subjecting to the prepared natural extract

Anti-Cancer Activity

Anticancer activity of the ultrasonic-assisted grapes seed extract was examined against normal Skin fibroblast (BJ1),
Pancreatic cancer cell line (PACA2), Lung carcinoma cell line (A549), and Human Caucasian breast adenocarcinoma
MCF7. The results proved the selective activity of the extract on a normal cell line by an inhibition ratio of 12.3%. An
obvious reduction percentage of 78.2 % was recorded for PACA2 cells. Moreover, MCF7 was reduced by 65.3 %. The
A549 had the lowest inhibition ratio of 25.2 at 100 ppm. The obtained results proved the cancer chemopreventive
potential of the synthesized extract against tested cell lines. However, the variations in the inhibition percentage are
due to the different anticancer mechanisms against cancer cell lines. The extract's anticancer activity mainly depends
on its antioxidant activity. The promising anti-cancer activity of grapes seed extract is attributed to its high content of
procyanidin dimers, especially procyanidin B2 as it is responsible for inhibition of the activity and expression of
aromatase enzyme. Consequently, inhibits the conversion of androgens into estrogens in aromatase-transfected
breast cancer cells and their xenografts [51, 52]. Additionally, Grapes seed extract proved to significantly reduce the
metastatic nodules on the lung cancer cells surface [53]. Moreover, it exerts anti-proliferative and anti-angiogenic
effects, thereby exerting growth inhibitory effect thus resulting in induction of apoptotic activity [54].



Materials Chemistry Horizons | 2024, 3, 1068 13 of 16

CONCLUSION

Egyptian grapes seed powder was characterized to investigate its structure as each country has its agricultural
conditions. The obtained grape seeds were successfully extracted via an ultra-sonication probe at a power of 6 KJ for
ten minutes only. The sonication technique proved its ability to preserve the grapes seed extract functional flavonoids
as well as the other effective constituents. The obtained extract exhibits promising antioxidant activity as the
measured total flavonoid content recorded a high value of 58 mg quercetin equivalents/g. Moreover, grape seed
extract recorded a promising free radical scavenging percentage of 91.29 competing with ascorbic acid as most a free
radical scavenger. Additionally, promising bactericidal activity against Gram-negative compared to Gram-positive
bacteria due to the difference in their cell wall structure. Further, the anticancer activity results proved the selectivity
of the extract on PACA2 cells with an inhibition percentage of 78.2 % followed by 65.3 % for MCF7 while the lowest
inhibition ratio of 25.2 was recorded for A549.
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